The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells.

AUTOR(ES)
RESUMO

Previous work by our laboratory and others has shown that mouse cells normally resistant to tumor necrosis factor can be made sensitive to the cytokine by the expression of adenovirus E1A. The E1A gene can be introduced by either infection or transfection, and either of the two major E1A proteins, 289R or 243R, can induce this sensitivity. The E1A proteins are multifunctional and modular, with specific domains associated with specific functions. Here, we report that the CD1 domain of E1A is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse C3HA fibroblasts. Amino acids C terminal to residue 60 and N terminal to residue 36 are not necessary for this function. This conclusion is based on 51Cr-release assays for cytolysis in cells infected with adenovirus mutants with deletions in various portions of E1A. These E1A mutants are all in an H5dl309 background and therefore they lack the tumor necrosis factor protection function provided by the 14.7-kilodalton (14.7K) protein encoded by region E3. Western blot (immunoblot) analysis indicated that most of the mutant E1A proteins were stable in infected C3HA cells, although with certain large deletions the E1A proteins were unstable. The region between residues 36 and 60 is included within but does not precisely correlate with domains in E1A that have been implicated in nuclear localization, enhancer repression, cellular immortalization, cell transformation in cooperation with ras, induction of cellular DNA synthesis and proliferation, induction of DNA degradation, and binding to the 300K protein and the 105K retinoblastoma protein.

Documentos Relacionados