The cadC gene product of alkaliphilic Bacillus firmus OF4 partially restores Na+ resistance to an Escherichia coli strain lacking an Na+/H+ antiporter (NhaA).

AUTOR(ES)
RESUMO

A 5.6-kb fragment of alkaliphilic Bacillus firmus OF4 DNA was isolated by screening a library of total genomic DNA constructed in pGEM3Zf(+) for clones that reversed the Na+ sensitivity of Escherichia coli NM81, in which the gene encoding an Na+/H+ antiporter (NhaA) is deleted (E. Padan, N. Maisler, D. Taglicht, R. Karpel, and S. Schuldiner, J. Biol. Chem. 264:20297-20302, 1989). The plasmid, designated pJB22, contained two genes that apparently encode transposition functions and two genes that are apparent homologs of the cadA and cadC genes of cadmium resistance-conferring plasmid pI258 of Staphylococcus aureus. E. coli NM81 transformed with pJB22 had enhanced membrane Na+/H+ antiporter activity that was cold labile and that decreased very rapidly following isolation of everted vesicles. Subclones of pJB22 containing cadC as the only intact gene showed identical complementation patterns in vivo and in vitro. The cadC gene product of S. aureus has been proposed to act as an accessory protein for the Cd2+ efflux ATPase (CadA) (K. P. Yoon and S. Silver, J. Bacteriol. 173:7636-7642, 1991); perhaps the alkaliphile CadC also binds Na+ and enhances antiporter activity by delivering a substrate to an integral membrane antiporter. A 6.0-kb fragment overlapping the pJB22 insert was isolated to complete the sequence of the cadA homolog. A partial sequence of a region approximately 2 kb downstream of the cadA locus shares sequence similarity with plasmids from several gram-positive bacteria. These results suggest that the region of alkaliphile DNA containing the cadCA locus is present on a transposon that could reside on a heretofore-undetected endogenous plasmid.

Documentos Relacionados