The cell surface receptor is a major determinant restricting the host range of the B-lymphotropic papovavirus.

AUTOR(ES)
RESUMO

The B-lymphotropic papovavirus (LPV) productively infects only a subset of human B-lymphoma-derived cell lines while transfection of the viral genome yields infectious viral particles in a much wider variety of human hematopoietic cell lines. We have analyzed the contribution of a putative LPV receptor on the cell surface of B-cell lines in restricting the virus host range. In order to establish a quantitative virus binding assay for LPV, infectious virus particles were highly purified by metrizamide equilibrium density centrifugation and used as immunogens to raise seven mouse monoclonal antibodies specific for LPV VP1. Virus particle binding was quantitated in an indirect, nonradioactive assay with an LPV VP1-specific enzyme-linked immunosorbent assay. Binding of LPV particles to permissive human B-lymphoma cell line BJA-B occurred within minutes. Kinetics and capacity of binding were similar at 4 and 37 degrees C. A BJA-B cell was estimated to bind approximately 600 virus particles at conditions under which 50% of the administered virus was bound. The sialidase and trypsin sensitivities of the cellular virus binding moiety show that sialylated and proteinaceous components are necessary components of the LPV receptor on BJA-B cells. Despite a high binding capacity of BJA-B cells for simian virus 40, LPV binding was not significantly affected by a 20-fold excess of simian virus 40 particles, indicating that these related polyomaviruses do not bind to the same receptor on BJA-B cells. Reduction of LPV binding to sialidase-pretreated BJA-B cells was accompanied by a similar reduction of infection, indicating that virus binding may be a limiting factor in the LPV replicative cycle. The two highly LPV-permissive human B-lymphoma cell lines BJA-B and Namalwa displayed high virus binding whereas low and nonpermissive hematopoietic cell lines showed reduced or undetectable virus binding. We conclude that the inability of LPV particles to productively infect the nonpermissive human hematopoietic cell lines analyzed is probably due to the absence or insufficient expression of a functional cell surface receptor.

Documentos Relacionados