The CorA Mg2+ Transporter Is a Homotetramer

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

CorA is a primary Mg2+ transporter for Bacteria and Archaea. The C-terminal domain of ∼80 amino acids forms three transmembrane (TM) segments, which suggests that CorA is a homo-oligomer. A Cys residue was added to the cytoplasmic C terminus (C317) of Salmonella enterica serovar Typhimurium CorA with or without mutation of the single periplasmic Cys191 to Ser; each mutant retained function. Oxidation of the Cys191Ser Cys317 CorA gave a dimer. Oxidation of Cys317 CorA showed a dimer plus an additional band, apparently cross-linked via both Cys317 and C191. To determine oligomer order, intact cells or purified membranes were treated with formaldehyde or carbon disulfide. Higher-molecular-mass bands formed, consistent with the presence of a tetramer. Cross-linking of the Bacillus subtilis CorA expressed in Salmonella serovar Typhimurium similarly indicated a tetramer. CorA periplasmic soluble domains from both Salmonella serovar Typhimurium and the archaeon Methanococcus jannaschii were purified and shown to retain structure. Formaldehyde treatment showed formation of a tetramer. Finally, previous mutagenesis of the CorA membrane domain identified six intramembrane residues forming an apparent pore that interacts with Mg2+ during transport. Each was mutated to Cys. In mutants carrying a single intramembrane Cys residue, spontaneous disulfide bond formation that was enhanced by oxidation with Cu(II)-1,10-phenanthroline was observed between monomers, indicating that these Mg2+-interacting residues within the membrane are very close to their cognate residue on another monomer. Thus, CorA appears to be a homotetramer with a TM segment of one monomer physically close to the same TM segment of another monomer.

Documentos Relacionados