The Effect of Adenosine 5′-Triphosphate on the Shibata Shift and on Associated Structural Changes in the Conformation of the Prolamellar Body in Isolated Maize Etioplasts 1

AUTOR(ES)
RESUMO

Isolated maize (Zea mays var. kelvedon glory) etioplasts have been used to investigate the relationships between the spectral shifts and ultrastructural changes which occur during light-induced chloroplast development. After primary photoconversion, the Shibata shift was observed as a change from 680 to 670 nm in the chlorophyllide absorption maximum. When 1.5 nm ATP was added to the incubation medium the maximum was 675 nm even after 3.5 hours of illumination. Difference spectra for this effect indicate ATP inhibition of the Shibata shift. Two bands with maxima at 682 and 669 nm can be used to fit spectra of both ATP-treated and control etioplasts, the estimated proportions of chlorophyllide 682 being 36% and 6%, respectively. Quantitative analysis of electron micrographs of the etioplasts showed that the frequency of untransformed prolamellar bodies was also higher in the presence of ATP (73% untransformed compared to 22% in the absence of ATP). A similar correlation was observed when transformation was measured for two etioplast fractions which show the shift to different extents. These results imply that the Shibata shift and prolamellar body transformation are related events, both being inhibited by the presence of ATP. ATP may therefore have an important role in regulating the early stages of plastid development.

Documentos Relacionados