The human cytomegalovirus UL37 immediate-early regulatory protein is an integral membrane N-glycoprotein which traffics through the endoplasmic reticulum and Golgi apparatus.

AUTOR(ES)
RESUMO

The human cytomegalovirus (HCMV) UL37 immediate-early gene is predicted to encode a type I membrane-bound glycoprotein, gpUL37. Following expression of the UL37 open reading frame in vitro, its signals for translocation and N-glycosylation were recognized by microsomal enzymes. Its orientation in the microsomes is that of a type I protein. gpUL37 produced in HCMV-infected human cells was selectively immunoprecipitated by rabbit polyvalent antiserum generated against the predicted unique domains of the UL37 open reading frame and migrated as an 83- to 85-kDa protein. Tunicamycin treatment, which inhibits N-glycosylation, increased the rate of migration of the UL37 protein to 68 kDa, verifying its modification by N-glycosylation in HCMV-infected cells. Consistent with this observation, gpUL37 was found to be resistant to digestion with either endoglycosidase F or H but sensitive to peptide N-glycosidase F digestion. These results suggested that gpUL37 is N-glycosylated and processed in both the endoplasmic reticulum (ER) and the Golgi apparatus. Direct demonstration of passage of gpUL37 through the ER and the Golgi was obtained by confocal microscopy. gpUL37 colocalized with protein disulfide isomerase, a protein resident in the ER, and with a Golgi protein. Subcellular fractionation of HCMV-infected cells demonstrated that gpUL37 is an integral membrane protein. Taken together, our results demonstrate that the HCMV gpUL37 immediate-early regulatory protein is a type I integral membrane N-glycoprotein which traffics through the ER and the Golgi network.

Documentos Relacionados