The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines.

AUTOR(ES)
RESUMO

The product of the human cytomegalovirus (CMV) UL97 gene, which controls ganciclovir phosphorylation in virus-infected cells, is homologous to known protein kinases but diverges from them at a number of positions that are functionally important. To investigate UL97, we raised an antibody against it and overexpressed it in baculovirus-infected insect cells. Recombinant baculovirus expressing full-length UL97 directed the phosphorylation of ganciclovir in insect cells, which was abolished by a four-codon deletion that confers ganciclovir resistance to CMV. When incubated with [gamma-32P]ATP, full-length UL97 was phosphorylated on serine and threonine residues. Phosphorylation was severely impaired by a point mutation that alters lysine-355 in a motif that aligns with subdomain II of protein kinases. However, phosphorylation was impaired much less severely by the four-codon deletion. A UL97 fusion protein expressed from recombinant baculovirus was purified to near homogeneity. It too was phosphorylated upon incubation with [gamma-32P]ATP in vitro. This phosphorylation, which was abolished by the lysine 355 mutation, was optimal at high NaCl and high pH. The activity required either Mn2+ or Mg2+, with a preference for Mn2+, and utilized either ATP or GTP as a phosphate donor, with Kms of 2 and 4 microM, respectively. The phosphorylation rate was first order with protein concentration, consistent with autophosphorylation. These data strongly argue that UL97 is a serine/threonine protein kinase that autophosphorylates and suggest that the four-codon deletion affects its substrate specificity.

Documentos Relacionados