The "independence principle" in the processes of water transport.

AUTOR(ES)
RESUMO

The processes of membrane transport exhibiting permeability coefficients depending on the species activities do not obey the "independence principle" and are assumed to take place by a mechanism of discrete nature, analyzable by a kinetic formalism. In this article, we study the dependence of the osmotic permeability coefficient on the water activities, from the steady-state analysis of a kinetic model of single-file water transport that simultaneously incorporates the vacancy-mediated and "knock-on" mechanisms into the state diagram. In particular, we study the relation between the near-equilibrium osmotic permeability (Pe) and the equilibrium water activity of the compartments (w). The analysis and numerical calculations performed for a simple case of the model show that, for values of the parameters consistent with experimental data, Pe exhibits only a small variation with w within the physiological range in the majority of the situations considered here. It is not possible to predict, from the study of these simple models, whether more complicated kinetic diagrams of water transport may be characterized by permeability coefficients with a more evident dependence on the water activities. Nevertheless, the results obtained here suggest that, for the case of physiological water pores, the analysis of the kinetic dependence of the permeability coefficients on the water activities may not yield evidence pointing to a discrete nature for the transport process.

Documentos Relacionados