The nac (nitrogen assimilation control) gene from Klebsiella aerogenes.

AUTOR(ES)
RESUMO

The Klebsiella aerogenes nac gene, whose product is necessary for nitrogen regulation of a number of operons, was identified and its DNA sequence determined. The nac sequence predicted a protein a 305 amino acids with a strong similarity to members of the LysR family of regulatory proteins, especially OxyR from Escherichia coli. Analysis of proteins expressed in minicells showed that nac is a single-gene operon whose product has an apparent molecular weight of about 32 kDa as measured in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immediately downstream from nac is a two-gene operon, the first gene of which encodes another member of the LysR family. Upstream from nac is a tRNAAsn gene transcribed divergently from nac. About 60 bp upstream from the nac open reading frame lies a sequence nearly identical to the consensus for sigma 54-dependent promoters, with the conserved GG and GC nucleotides at -26 and -14 relative to the start of transcription. About 130 bp farther upstream (at -153 relative to the start of transcription) is a sequence nearly identical to the transcriptional activator NTRC-responsive enhancer consensus. Another weaker NTRC-binding site is located adjacent to this site (at -133 relative to the start of transcription). Thus, we propose that nac is transcribed by RNA polymerase carrying sigma 54 in response to the nitrogen regulatory (NTR) system. A transposon located between the promoter and the nac ORF prevented NTR-mediated expression of nac, supporting this identification of the promoter sequence. The insertion of over 5 kb of transposon DNA between the enhancer and its target promoter had only a weak effect on enhancer-mediated regulation, suggesting that enhancers may be able to act at a considerable distance on the bacterial chromosome.

Documentos Relacionados