The nuclear factor YY1 participates in repression of the beta-casein gene promoter in mammary epithelial cells and is counteracted by mammary gland factor during lactogenic hormone induction.

AUTOR(ES)
RESUMO

Expression of the beta-casein milk protein gene in the mammary epithelial cell line HC11 is primarily regulated at the transcriptional level. A 338-bp segment of promoter sequence 5' of the transcription start site is sufficient to confer inducibility by the lactogenic hormones insulin, glucocorticoid hormone, and prolactin. Positively and negatively acting promoter elements and specific DNA binding proteins have been identified. The binding of the mammary gland factor MGF to a site between -80 and -100 is indispensable for hormonal induction of transcription. Binding of MGF activity to DNA is greatly enhanced by the action of the lactogenic hormones. Repression of transcription in the uninduced state is mediated by a promoter element located adjacent to the MGF binding site at positions -110 to -150. This repressor element consists of two interacting protein binding sites. A nuclear factor that binds specifically to the proximal site between positions -110 and -120 has been characterized and found to be identical with the nuclear factor YY1 (delta, NF-E1). YY1 does not bind to the distal site. The simultaneous mutation in the proximal and the distal sites results in high, hormone-independent transcription. This finding suggests that YY1 plays a functional role in the repression and acts in conjunction with a second DNA binding protein. Comparison of YY1 DNA binding activity in uninduced and hormone-induced cells showed that relief of repression is not mediated by changes in the concentration or binding affinity of YY1. Infection of HC11 cells with a YY1-expressing recombinant retrovirus resulted in overexpression of YY1 but did not suppress hormonal induction. The addition of purified MGF decreased YY1 binding to its DNA recognition site in vitro. This finding indicates that MGF regulates the DNA binding activity of YY1 and thereby may cause the relief of transcriptional repression.

Documentos Relacionados