The Palmitoyltransferase of the Cation-dependent Mannose 6-Phosphate Receptor Cycles between the Plasma Membrane and Endosomes

AUTOR(ES)
FONTE

The American Society for Cell Biology

RESUMO

The cation-dependent mannose 6-phosphate receptor (CD-MPR) mediates the transport of lysosomal enzymes from the trans-Golgi network to endosomes. Evasion of lysosomal degradation of the CD-MPR requires reversible palmitoylation of a cysteine residue in its cytoplasmic tail. Because palmitoylation is reversible and essential for correct trafficking, it presents a potential regulatory mechanism for the sorting signals within the cytoplasmic domain of the CD-MPR. Characterization of the palmitoylation performing an in vitro palmitoylation assay by using purified full-length CD-MPR revealed that palmitoylation of the CD-MPR occurs enzymatically by a membrane-bound palmitoyltransferase. In addition, analysis of the localization revealed that the palmitoyltransferase cycles between endosomes and the plasma membrane. This was identified by testing fractions from HeLa cell homogenate separated on a density gradient in the in vitro palmitoylation assay and further confirmed by in vivo labeling experiments by using different treatments to block specific protein trafficking steps within the cell. We identified a novel palmitoyltransferase activity in the endocytic pathway responsible for palmitoylation of the CD-MPR. The localization of the palmitoyltransferase not only fulfills the requirement of our hypothesis to be a regulator of the intracellular trafficking of the CD-MPR but also may affect the sorting/activity of other receptors cycling through endosomes.

Documentos Relacionados