The pattern of histogenesis and growth of tooth plates in larval stages of extant lungfish.

AUTOR(ES)
RESUMO

Comparison of new data obtained in this study on Protopterus aethiopicus with that published on Protopterus aethiopicus and Neoceratodus forsteri has confirmed the suggestion that the pattern of histogenesis of tooth plates in the early larval stages is very similar in the two genera. These similarities are more apparent both when a common terminology is adopted, based on a topogenic classification, and when the fundamental assumption is made that a single morphogenetic system operates for all odontodes. The model to explain the structure of all vertebrate dentitions with separate teeth in single or multiple tooth rows has been found to apply to dipnoan dentitions with fused teeth in a composite tooth plate. In this model, the epithelial invagination surrounding the margins of the tooth plate represents the dental lamina and, where this is in contact with mesenchymal cells, cell clusters (protogerms) arise. From these protogerms new odontodes (teeth) may develop if factors to inhibit differentiation are not present. Sites for initiation of odontodes become restricted to the labial margins of existing ridges on the tooth plate. Experimental studies on mammalian tooth germs are discussed and a model proposed for control of odontogenesis and histogenesis in dipnoan dentitions. Patterns of growth of hypermineralised petrodentine have been analysed and shown to depend initially on the arrangement of odontodes, and subsequently upon the ability of special cells in the pulp to generate new and wider layers of petrodentine. The initial pattern of petrodentine depends upon the position of odontodes in the forming ridges of the tooth plate. Subsequent patterns of petrodentine depend upon the extent of replacement growth beneath the tritural surface. Specialised cells, petroblasts, secrete the petrodentine within a shell of dentine. These cells differentiate from cells of the dental papilla after odontoblasts have begun to form dentine. They are regarded as a unique type of cell for dipnoans.

Documentos Relacionados