The polymerase-like core of brome mosaic virus 2a protein, lacking a region interacting with viral 1a protein in vitro, maintains activity and 1a selectivity in RNA replication.

AUTOR(ES)
RESUMO

Brome mosaic virus (BMV), a member of the alphavirus-like super-family of positive-strand RNA viruses, encodes two proteins required for viral RNA replication: 1a and 2a. 1a contains m7G methyltransferase- and helicase-like domains, while 2a contains a polymerase (pol)-like core flanked by N- and C-terminal extensions. Genetic studies show that BMV RNA replication requires 1a-2a compatibility implying direct or indirect 1a-2a interaction in vivo. In vitro, la interacts with the N-terminal 125-amino-acid segment of 2a preceding the pol-like core, and prior deletion studies suggested that this 2a segment was essential for RNA replication. We have now used protein fusions and deletions to explore possible parallels between noncovalent 1a-2a interaction and covalent fusion of similar protein domains in tobacco mosaic virus and to see whether the N-terminal 2a-1a interaction was the primary basis for 1a-2a compatibility in vivo. We found that 2a can function as part of a tobacco mosaic virus-like 1a-2a fusion and that a 2a segment (amino acids 162 to 697) comprising the pol-like core was sufficient to provide 2a functions in such a fusion. Unexpectedly, the unfused 2a core segment also supported RNA replication when it and wild-type la were expressed as separate proteins. Moreover, in gene reassortant experiments with the related cowpea chlorotic mottle virus, the unfused 2a core segment showed the same 1a compatibility requirements as did wild-type BMV 2a. Thus, the pol-like core of 2a must interact with la in a way that is selective and essential for RNA synthesis, and 1a-2a interactions are more complex than the single, previously mapped interaction of the N-terminal 2a segment with 1a.

Documentos Relacionados