The Subcellular Localization of Plant Protein Phosphatase 5 Isoforms Is Determined by Alternative Splicing[w]

AUTOR(ES)
FONTE

The American Society for Plant Biologists

RESUMO

Protein serine/threonine phosphatase 5 (PP5) plays an important role in signal transduction in animal cells, but in plants, knowledge about PP5 is scarce. Here, we describe the isolation of a full-length cDNA encoding tomato (Lycopersicon esculentum) PP5 (LePP5) and its expression in Escherichia coli. Biochemical characterization showed that recombinant LePP5 has a low intrinsic protein phosphatase activity. This activity was increased 6- to 10-fold by either removal of the N-terminal tetratricopeptide repeat domain or by addition of fatty acids, indicating that biochemical features specific for PP5 homologs from other species are conserved in tomato. The single-copy LePP5 gene was cloned and shown to encode two mRNA species that arise by alternative pre-mRNA splicing. Similarly, Arabidopsis was found to express two PP5 transcripts, suggesting that alternative splicing of PP5 pre-mRNA is not specific for tomato. Alternative splicing results in a larger transcript containing an additional exon encoding two putative transmembrane domains and, hence, in a larger PP5 isoform. Subcellular fractionation studies on tomato protein lysates indicated that the majority of the 55-kD LePP5 isoform is soluble, whereas the 62-kD isoform is an integral membrane protein. Production of yellow fluorescent protein-PP5 chimeras in plant cells indicated that the 55-kD isoform is localized in both the nucleus and the cytoplasm, whereas the 62-kD isoform is targeted to the endoplasmic reticulum, including the nuclear envelope. Our findings show that alternative splicing generates two LePP5 isoforms with a different subcellular localization.

Documentos Relacionados