Tight binding of clarithromycin, its 14-(R)-hydroxy metabolite, and erythromycin to Helicobacter pylori ribosomes.

AUTOR(ES)
RESUMO

Clarithromycin is a recently approved macrolide with improved pharmacokinetics, antibacterial activity, and efficacy in treating bacterial infections including those caused by Helicobacter pylori, an agent implicated in various forms of gastric disease. We successfully isolated ribosomes from H. pylori and present the results of a study of their interaction with macrolides. Kinetic data were obtained by using 14C-labeled macrolides to probe the ribosomal binding site. Clarithromycin, its parent compound erythromycin, and its 14-(R)-hydroxy metabolite all bound tightly to H. pylori ribosomes. Kd values were in the range of 2 x 10(-10) M, which is the tightest binding interaction observed to date for a macrolide-ribosome complex. This tight binding was due to very slow dissociation rate constants of 7.07 x 10(-4), 6.83 x 10(-4), and 16.6 x 10(-4) min-1 for clarithromycin, erythromycin, and 14-hydroxyclarithromycin, respectively, giving half-times of dissociation ranging from 7 to 16 h, the slowest yet measured for a macrolide-ribosome complex. These dissociation rate constants are 2 orders of magnitude slower than the dissociation rate constants of macrolides from other gram-negative ribosomes. [14C]clarithromycin was bound stoichiometrically to 50S ribosomal subunits following incubation with 70S ribosomes and subsequent separation of the 30S and 50S subunits by sucrose density gradient centrifugation. These data predict that the lower MIC of clarithromycin compared with that of erythromycin for H. pylori is likely due to a faster rate of intracellular accumulation, possibly because of increased hydrophobicity.

Documentos Relacionados