Tissue-specific expression of the diazepam-binding inhibitor in Drosophila melanogaster: cloning, structure, and localization of the gene.

AUTOR(ES)
RESUMO

The diazepam-binding inhibitor (DBI; also called acyl coenzyme A-binding protein or endozepine) is a 10-kDa polypeptide found in organisms ranging from yeasts to mammals. It has been shown that DBI and its processing products are involved in various specific biological processes such as GABAA/benzodiazepine receptor modulation, acyl coenzyme A metabolism, steroidogenesis, and insulin secretion. We have cloned and sequenced the Drosophila melanogaster gene and cDNA encoding DBI. The Drosophila DBI gene encodes a protein of 86 amino acids that shows 51 to 56% identity with previously known DBI proteins. The gene is composed of one noncoding 5' and two coding exons and is localized on the chromosomal map at position 65E. Several transcription initiation sites were detected by RNase protection and primer extension experiments. Computer analysis of the promoter region revealed features typical of housekeeping genes, such as the lack of TATA and CCAAT elements. However, in its low GC content and lack of a CpG island, the region resembles promoters of tissue-specific genes. Northern (RNA) analysis revealed that the expression of the DBI gene occurred from the larval stage onwards throughout the adult stage. In adult flies, DBI mRNA and immunoreactivity were detected in the cardia, part of the Malpighian tubules, the fat body, and gametes of both sexes. Developmentally regulated expression, disappearing during metamorphosis, was detected in the larval and pupal brains. No expression was detected in the adult nervous system. On the basis of the expression of DBI in some but not all tissues with high energy consumption, we propose that in D. melanogaster, DBI is involved in energy metabolism in a manner that depends on the substrate used for energy production.

Documentos Relacionados