Transcellular sodium fluxes and pump activity in Necturus gall-bladder epithelial cells.

AUTOR(ES)
RESUMO

1. Transepithelial Na transport in Necturus was determined by measuring the rate of isotonic fluid flow. The rate at 20 degrees C was equivalent to 175 pmol cm-2 s-1. 2. Ouabain was effective in Necturus, binding to the Na pump in gall-bladder cells with a mean rate constant of 5.4 X 10(3) M-1 s-1. Measurement of the diffusive time constant of the free space for [3H]ouabain shows that the pump must be fully inhibited within 20 s when ouabain is applied to the serosa at 10(-3) M. 3. The serosal Na efflux from loaded cells was inhibited 36% by ouabain equal to a flux of 73 pmol cm-2 s-1. The remaining flux could not be attributed to either exchange diffusion or electrodiffusion induced by ouabain. 4. The transepithelial potential was 0.3 mV serosa positive. The short-circuit current measured was 6.33 +/- 1.9 microA cm-2, equal to a positive univalent ion flux of 65.6 pmol cm-2 s-1 or 38% of the net Na transfer. The current was inhibited within 1-5 min by 5 X 10(-5) M-amiloride. 5. Fluid secretion was immediately inhibited 34% by ouabain, equivalent to an isotonic transport of Na of 59.7 pmol cm-2 s-1. Thereafter it continued for at least an hour, sometimes declining slowly. Amiloride had little effect (13%). 6. The Na pump rate was measured by titrating the cell content with tracer Na at different times after ouabain treatment. The initial slope was equal to a rate of 61.6 pmol cm-2 s-1 or 35% of the net flux at time zero. 7. The Na pump rate has also been measured by recording the rise in cell Na activity with ion-specific micro-electrodes, and correcting for swelling effects. The Na pump rate was very similar to that estimated from the rise in tracer Na content, equal to 59.3 pmol cm-2 s-1 or 31.4% of the transepithelial rate. Examination of the same experiment in the literature shows a closely similar value, about one-third of that expected from fluid secretion or net flux measurements. 8. A scheme is proposed to explain the results, which requires a flow of NaCl through a parallel pathway of small Na content involving exchange en route with the cytoplasmic Na.

Documentos Relacionados