Transcription factor PRDII-BF1 activates human immunodeficiency virus type 1 gene expression.

AUTOR(ES)
RESUMO

Gene expression of human immunodeficiency virus (HIV) is modulated by both cellular transcription factors, which bind to cis-acting regulatory elements in the HIV-1 long terminal repeat (LTR) and the viral transactivator, tat. The enhancer element in the HIV-1 LTR which extends from -103 to -82 is critical for gene expression. This region contains two identical 10-bp direct repeats which serve as binding sites for members of the NF-kappa B family of transcription factors. However, several other cellular transcription factors, including a group of zinc finger DNA-binding proteins, also bind to NF-kappa B and related motifs. A member of this family of transcription factors, designated PRDII-BF1 or MBP-1, is a 300-kDa cellular protein which contains two widely separated zinc finger DNA binding domains. Each of these binding domains is capable of binding to NF-kappa B or related recognition motifs. Since no functional role for this protein has been demonstrated in the regulation of viral and cellular promoters, we began studies to determine whether PRDII-BF1 could modulate HIV-1 gene expression. DNase I footprinting of the HIV-1 LTR indicated that PRDII-BF1 bound to both NF-kappa B and TAR transactivation response DNA elements. Both in vitro translation and vaccinia virus expression of PRDII-BF1 cDNA resulted in the synthesis of the full-length 300-kDa PRDII-BF1 protein. Transfection experiments, using both eucaryotic expression vectors and antisense constructs, indicated that PRDII-BF1 activated HIV-1 gene expression in both the presence and absence of tat. These results are consistent with a role for PRDII-BF1 in activating HIV-1 gene expression.

Documentos Relacionados