Transformation of Chlorinated Benzenes and Toluenes by Ralstonia sp. Strain PS12 tecA (Tetrachlorobenzene Dioxygenase) and tecB (Chlorobenzene Dihydrodiol Dehydrogenase) Gene Products

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The tecB gene, located downstream of tecA and encoding tetrachlorobenzene dioxygenase, in Ralstonia sp. strain PS12 was cloned into Escherichia coli DH5α together with the tecA gene. The identity of the tecB gene product as a chlorobenzene dihydrodiol dehydrogenase was verified by transformation into the respective catechols of chlorobenzene, the three isomeric dichlorobenzenes, as well as 1,2,3- and 1,2,4-trichlorobenzenes, all of which are transformed by TecA into the respective dihydrodihydroxy derivatives. Di- and trichlorotoluenes were either subject to TecA-mediated dioxygenation (the major or sole reaction observed for the 1,2,4-substituted 2,4-, 2,5-, and 3,4-dichlorotoluenes), resulting in the formation of the dihydrodihydroxy derivatives, or to monooxygenation of the methyl substituent (the major or sole reaction observed for 2,3-, 2,6-, and 3,5-dichloro- and 2,4,5-trichlorotoluenes), resulting in formation of the respective benzyl alcohols. All of the chlorotoluenes subject to dioxygenation by TecA were transformed, without intermediate accumulation of dihydrodihydroxy derivatives, into the respective catechols by TecAB, indicating that dehydrogenation is no bottleneck for chlorobenzene or chlorotoluene degradation. However, only those chlorotoluenes subject to a predominant dioxygenation were growth substrates for PS12, confirming that monooxygenation is an unproductive pathway in PS12.

Documentos Relacionados