Transgenic mouse model of malignant skin melanoma.

AUTOR(ES)
RESUMO

Tyr-SV40E transgenic mice are specifically susceptible to melanoma due to expression of the oncogene in pigment cells. Mice of the more susceptible lines die young of early-onset eye melanomas, when skin melanomas are still infrequent and benign. To surmount this obstacle, skin from donors of two high-susceptibility lines was grafted to Tyr-SV40E hosts of a low-susceptibility line of the same inbred strain, thereby enabling the skin to outlive the donors and continue to grow in immunocompetent but tolerant hosts. Unexpectedly, donor pigment cells in all the grafts soon selectively proliferated close to areas of greatest wound healing, forming a dense black tracery, especially at the outer rim of the grafts. These lesions slowly grew radially within the grafts, producing irregular greyish patches. Local vertical thickenings then appeared and developed into small melanomas, which soon ulcerated through the epidermis. The tumors rapidly enlarged and became deeply invasive. Discrete black nevi also arose, with many becoming larger and distinctly blue, but those not near areas of pronounced wound healing did not progress to malignancy. In this first series, malignant melanoma resulted in all the grafts from the more susceptible of two donor lines and in some grafts from the other line. Distant metastases occurred in some cases from each line. Most tumors were hypomelanotic and heterogeneous, with lobes or areas differing in melanization. The results strongly suggest that growth factors and cytokines--known to be produced in wound repair--are triggering the growth and malignant conversion of these genetically susceptible melanocytes and that in the graft situation we are merely witnessing a caricature--a usefully exaggerated manifestation of the true events underlying the genesis of melanomas. The striking resemblance to the human malignancy, the genetic uniformity and different susceptibilities of the transgenic lines, and the experimental possibilities in the grafted mice all make them an excellent model of the disease.

Documentos Relacionados