Transgenic Mouse with the Herpes Simplex Virus Type 1 Latency-Associated Gene: Expression and Function of the Transgene

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

During herpes simplex virus type 1 (HSV-1) latent infection in human peripheral sensory ganglia, the major viral gene transcribed is the latency-associated transcript (LAT) gene. In order to facilitate the study of this gene, we generated a transgenic mouse that contains the DNA fragment that transcribes the LAT RNAs (2.0 kb and its 1.5-kb spliced transcript) under control of the cytomegalovirus promoter. The tissue distribution of these transcripts and their effects upon HSV-1 replication, latency, and reactivation in the transgenic-mouse model were examined. Different steady-state amounts of both transcripts were found in various tissues. While the highest levels of the 2.0-kb RNA were detected in heart and skeletal muscle, the 1.5-kb transcript was found at elevated levels in the brain and at much higher levels in the trigeminal ganglia (TG). Replication of both the wild-type and a LAT-negative mutant virus was suppressed in primary embryonic fibroblasts obtained from LAT-expressing transgenic mice compared to that in cells obtained from normal mice. HSV-1 DNA amounts in latently infected TG of transgenic mice were similar to those in normal mice. Reactivation of latent HSV-1 LAT-negative mutants by explant cocultivation of TG from transgenic mice was more efficient than reactivation from normal-mouse TG. Considering our present and previous results, we propose that the significantly higher steady-state level of the 1.5-kb RNA in the TG may link this transcript to latency functions and that by inhibition of virus replication, the LAT gene may protect ganglion cells and thereby increase the probability of reactivation.

Documentos Relacionados