Translational control of exported proteins in Escherichia coli.

AUTOR(ES)
RESUMO

We recently described the suppression of export of a class of periplasmic proteins of Escherichia coli caused by overproduction of a C-terminal truncated periplasmic enzyme (GlpQ'). This truncated protein was not released into the periplasm but remained attached to the inner membrane and was accessible from the periplasm. The presence of GlpQ' in the membrane strongly reduced the appearance in the periplasm of some periplasmic proteins, including the maltose-binding protein (MBP), but did not affect outer membrane proteins, including the lambda receptor (LamB) (R. Hengge and W. Boos, J. Bacteriol., 162:972-978, 1985). To investigate this phenomenon further we examined the fate of MBP in comparison with the outer membrane protein LamB. We found that not only localization but also synthesis of MBP was impaired, indicating a coupling of translation and export. Synthesis and secretion of LamB were not affected. The possibility that this influence was exerted via the level of cyclic AMP could be excluded. Synthesis of MBP with altered signal sequences was also reduced, demonstrating that export-defective MBP which ultimately remains in the cytoplasm abortively enters the export pathway. When GlpQ' was expressed in a secA51(Ts) strain, the inhibition of MBP synthesis caused by GlpQ' was dominant over the precursor accumulation usually caused by secA51(Ts) at 41 degrees C. Therefore, GlpQ' acts before or at the level of recognition by SecA. For LamB the usual secA51(Ts) phenotype was observed. We propose a mechanism by which GlpQ' blocks an yet unknown membrane protein, the function of which is to couple translation and export of a subclass of periplasmic proteins.

Documentos Relacionados