Translocation events in the evolution of aminoacyl-tRNA synthetases.

AUTOR(ES)
RESUMO

We have characterized hisS, the gene encoding the histidyl-tRNA synthetase (HisRS) from the tetraodontoid fish Fugu rubripes. The hisS gene is about 3.5 kbp long and contains 13 exons and 12 introns of 172 bp, on average. The Fugu hisS gene encodes a putative protein of 519 amino acids with the three motifs identified as signatures of class 2 aminoacyl-tRNA synthetases. A model for the shifting of intron 8 between Fugu and hamster is proposed based on the successive appearance of a cryptic splicing site followed by an insertion mutation that created a new acceptor site. In addition, sequence comparisons suggest that the hisS gene has undergone a translocation through the first intron. As a result, the Fugu HisRS has an N-terminal sequence markedly different from that in the human and hamster enzymes. We propose that similar events have been responsible for variations at the N-terminal end of other aminoacyl-tRNA synthetases. Our analysis suggests that this involves exchanges through introns of two exons encoding an ancestral 32-amino acid motif.

Documentos Relacionados