Transmembrane Helix Association Affinity Can Be Modulated by Flanking and Noninterfacial Residues

AUTOR(ES)
FONTE

The Biophysical Society

RESUMO

The GxxxG sequence motif mediates the association of transmembrane (TM) helices by providing a site of close contact between them. However, it is not sufficient for strong association. For example, both bacteriophage M13 major coat protein (MCP) and human erythrocyte protein glycophorin A (GpA) contain a GxxxG motif in their TM domains and form a homodimer, but the association affinity of MCP, measured by the ToxCAT in vivo assay, is dramatically weaker than that of GpA. Even when all interfacial residues of MCP were substituted for those of GpA (MCP-GpA), association remained significantly weaker than in GpA. Here we provide an explanation for these experimental observations using molecular dynamics simulations in an implicit membrane (IMM1-GC). The association free energies of GpA29 (GpA with 29 residues all from the wild-type sequence), GpA15p11 (GpA with 15 residues from the wild-type sequence plus 11 flanking residues from the ToxCAT construct), MCP, and MCP-GpA TM helices were calculated and compared. MCP and MCP-GpA have the same flanking residues used in the ToxCAT assay as those in GpA15p11, but the position of the flanking residues relative to the GxxxG motif is different. The calculated association free energies follow experimental observations: the association affinity of MCP-GpA falls between those of GpA15p11 and MCP wild-type. MCP exhibits an equally strong interhelical interaction in the TM domain. A major reason for the weaker association of MCP in the calculations was the noninterfacial residue Lys-40, which in the dimer structure is forced to be buried in the membrane interior. To alleviate the desolvation cost, in MCP and MCP-GpA dimers, Lys-40 gets deprotonated. A second factor that modulates association affinity is the flanking residues. Thanks to them, GpA15p11 exhibits a much stronger association affinity than GpA29. The positioning of the flanking residues is also important, as evidenced by the difference in association affinity between MCP and MCP-GpA on one hand and GpA15p11 on the other. Thus, residues outside the contact interface can exert a significant influence on transmembrane helix association affinity.

Documentos Relacionados