Transport of vitamin B12 in Escherichia coli: cloning of the btuCD region.

AUTOR(ES)
RESUMO

The transport of vitamin B12 in Escherichia coli requires a specific vitamin B12 receptor protein in the outer membrane and the tonB gene product. In addition, the btuC gene, located at min 38 on the genetic map, has been found to influence vitamin B12 uptake or utilization. The btuC function is required for the growth response to vitamin B12 when the outer membrane transport process (btuB or tonB function) is defective. However, even in a wild-type strain, btuC is required for proper transport of vitamin B12. Additional mutations in the vicinity of btuC were isolated as lac fusions that produced a phenotype similar to that of a btuC mutant. The btuC region was cloned by selection for complementation of a btuC mutation. Complementation testing with plasmids carrying various deletions or transposon Tn1000 insertions demonstrated that the new mutations defined a separate, independently expressed locus, termed btuD. The coding regions for both genes were identified on a 3.4-kilobase HindIII-HincII fragment and were 800 to 1,000 base pairs in length. They were separated by a 600- to 800-base-pair region. The gene order in this portion of the chromosome map was found to be pps-zdh-3::Tn10-btuD-btuC-pheS. Expression of beta-galactosidase in the btuD-lac fusion-bearing strains, whether proficient or defective in vitamin B12 transport, was not regulated by the presence of vitamin B12 in the growth medium.

Documentos Relacionados