Transsynaptic impulse activity regulates postsynaptic density molecules in developing and adult rat superior cervical ganglion.

AUTOR(ES)
RESUMO

Ganglionic postsynaptic density protein (PSDp) was used to monitor the influence of transsynaptic impulse activity on synaptic structure in the developing and adult rat superior cervical sympathetic ganglion (SCG). Since transsynaptic activity is known to regulate ontogeny of postsynaptic transmitter enzymes, we initially studied the developing ganglion. Denervation in neonates prevented normal development, decreasing calmodulin binding to the ganglionic PSDp by 71% after 4 weeks. During this period, denervation elicited only a 42% decrease in total protein of the synaptic membrane fraction, suggesting that innervation regulates development of various synaptic components differentially. Effects of denervation were extremely rapid, resulting in a 44% decrease in calmodulin binding within 1 day, consistent with regulation by a signaling process such as impulse activity. The effect of impulse activity was examined more directly in adults by treatment with the agents reserpine or phenoxybenzamine, which elicit reflex increases in sympathetic transmission. Administration of reserpine resulted in a progressive 90% increase in calmodulin binding to the PSDp over 4 weeks. Phenoxybenzamine also elicited an increase, mimicking the effects of reserpine. Neither agent altered total protein of the synaptic membrane fraction, suggesting that impulse activity regulates specific synaptic components. Finally, ganglionic denervation in adults decreased PSDp binding within 12 hr, consistent with acute effects of impulse reduction. Our results suggest that transsynaptic impulse activity plays an important role in regulation of specific molecular components of the synapse.

Documentos Relacionados