Tsp transposons: a heterogeneous family of mobile sequences in the genome of the sea urchin Strongylocentrotus purpuratus.

AUTOR(ES)
RESUMO

In the preceding paper (J.B. Cohen, B. Hoffman-Liebermann, and L. Kedes, Mol. Cell. Biol., 5:2804-2813, 1985), we described the nucleotide sequence of ISTU4, which is a member of a new family of repetitive sequences, the Tsp family, present in a higher eucaryote, the sea urchin Strongylocentrotus purpuratus. We provided evidence that individual members of this family can act as transposable elements. Here we describe our structural analysis of the Tsp element family, which numbers about 1,000 members per haploid genome. Hybridization and nucleotide sequence analysis of several genomic Tsp clones demonstrate that structurally most Tsp elements resemble ISTU4. Tsp elements range in size up to about 1.3 kilobase pairs, have terminal domains that are conserved between the various examples studied, and contain a central portion of varying size, which may be extensively diverged. Structurally, however, the central portions are very similar and consist of several approximately 150-base-pairs-long, tandemly arranged, imperfect repeats, which are followed by a truncated repeat. The structural analysis is consistent with the possibility that the individual Tsp elements differ by multiples of these 150-base-pair repeats. One variant genomic clone has a solitary repeat and lacks the truncated repeat. The nucleotide sequences of different repeats of a single Tsp element can diverge extensively. The truncated repeat is divergent from most of the repeats, but in one case it is almost identical to a repeat of the same element. Comparison of the sequences from different elements enabled us to determine the boundaries of each structural domain and allows us to propose that each of these domains may be independent units of genetic information. Analysis of the population of Tsp-related sequences in the S. purpuratus genome by genomic blot hybridization suggests that most Tsp family members share the same overall structure. In addition, there is a structural element, about 70 base pairs long, that appears to interrupt the tandem arrangement of the 150-base-pair repeats at regular intervals.

Documentos Relacionados