Ubiquitin-dependent mechanism regulates rapid turnover of AU-rich cytokine mRNAs

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

An AU rich element (ARE) in the 3′ noncoding region promotes the rapid degradation of mammalian cytokine and proto-oncogene mRNAs, such as tumor necrosis factor-α, granulocyte–macrophage colony-stimulating factor (GM-CSF) and c-fos. Destabilization of ARE-mRNAs involves the association of ARE-binding proteins tristetraprolin or AUF1 and proteasome activity, of which the latter has not been characterized. Here, we show that the stability of a model short-lived mRNA containing the GM-CSF ARE was regulated by the level of ubiquitin-conjugating activity in the cell, which links ARE-mRNA decay to proteasome activity. Increased expression of a cytokine-inducible deubiquitinating protein (DUB) that impairs addition of ubiquitin to proteins fully blocked ARE-mRNA decay, whereas increased expression of a DUB that promotes ubiquitin addition to proteins strongly accelerated ARE-mRNA decay. ARE-mRNA turnover was found to be activated by the ubiquitin-addition reaction and blocked by the ubiquitin-removal reaction. Saturation of the ARE-mRNA decay machinery by high levels of ARE-mRNA, which is well established but not understood, was found to be relieved by increased expression of a DUB that promotes ubiquitin addition to proteins. Finally, inhibition of proteasome activity also blocked accelerated ARE-mRNA decay that is mediated by increased ubiquitin recycling. These results demonstrate that both ubiquitinating activity and proteasome activity are essential for rapid turnover of a model cytokine ARE-mRNA containing the GM-CSF ARE.

Documentos Relacionados