Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition.

AUTOR(ES)
RESUMO

Effect of the unsaturation of fatty acids in the glycerolipids of thylakoid membranes on low-temperature photoinhibition of photosynthesis was studied by mutation and transformation of the cyanobacterium Synechocystis PCC6803. When grown at 34 degrees C, the wild type contained mono-, di-, and triunsaturated lipids; a mutant, designated Fad6, contained mono- and diunsaturated lipids; and a transformant of Fad6, with a disrupted gene for desaturation and designated Fad6/desA::Kmr, contained only monounsaturated lipids. Fad6/desA::Kmr was the most susceptible among these strains to low-temperature photoinhibition of photosynthesis, whereas Fad6 and the wild type were apparently indistinguishable in terms of sensitivity to photoinhibition. This result suggests that the presence of diunsaturated fatty acids is important in protecting against low-temperature photoinhibition. The photoinhibition at room temperature, although much less significant than that at low temperature, was also affected by the unsaturation of fatty acids. By contrast, the photosynthetic transport of electrons, measured at various temperatures, was not affected by changes in extent of fatty acid unsaturation.

Documentos Relacionados