Use of single-stranded DNA oligonucleotides in programming ribosomes for translation.

AUTOR(ES)
RESUMO

Single-stranded DNA (ssDNA) oligomers were compared to synthetic RNA oligomers in their ability to program E. coli ribosomes in vitro. AUG and dATG-containing oligomers promoted the non-enzymatic binding of fmet-tRNA to ribosomes, with similar dependence on time and magnesium concentration; only at 10 mM Mg++ or at low oligomer concentration was RNA slightly preferred in complex formation. These initiation complexes were biologically active in that fmet-tRNA, bound in response to ssDNA or RNA, was fully reactive with puromycin. While dAUG could not function as an initiation codon, p-dAUG functioned as well as AUG or dATG. However, dUAA and p-dUAA could not replace UAA in directing release-factor (RF) activity, and dTAA functioned only to a slight extent. Release factors had specificity for termination complexes containing dATGTAA, dATGTAG, or dATGTGA. At Mg++ concentrations of 15 mM or higher, these hexamers directed peptidyl transferase-dependent fmet-tRNA hydrolysis in the absence of RF. We suggest this RF-independent activation of peptidyl transferase as a unique system for studying the mechanism of termination. Overall, these results indicate that ssDNA can be used in place of RNA for certain studies of protein synthesis.

Documentos Relacionados