Xenopus fibrinogen: characterization of the mRNAs for the three subunits.

AUTOR(ES)
RESUMO

We purified and characterized the mRNAs coding for each of the three subunits of Xenopus fibrinogen. Purification was accomplished by electrophoretic separation of liver polyadenylated RNA in a fully denaturing gel, followed by recovery of the RNA from the gel via transfer to an ion-exchange membrane. This procedure yielded fractions which were highly enriched for the mRNAs for each of the fibrinogen chains. The fibrinogen mRNAs were identified by two methods: (i) in vitro translation followed by subunit-specific cleavage with the proteases thrombin and batroxobin; and (ii) cross-hybridization with cDNA clones for individual subunits of rat fibrinogen. The results demonstrate that the A alpha and gamma chains of frog fibrinogen are each coded by a single mRNA species. The A alpha mRNA is ca. 3,100 nucleotides in length, which is nearly twice the minimum size required to code for the A alpha precursor polypeptide. The gamma chain mRNA comprises about 1,600 bases and includes only a small untranslated region. In contrast, the B beta subunit is synthesized from two mRNAs, one of which is 2,500 and the other 1,800 nucleotides long. The 2,500-base mRNA includes a large noncoding region, whereas the smaller one is near the minimum required size. The larger B beta mRNA is ca, fivefold more abundant that the smaller species.

Documentos Relacionados